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Abstract—We propose a time-frequency fused underwater
acoustic source localization method based on self-supervised
learning with contrastive predictive coding. Firstly, two fea-
ture extractors are trained to solve the pretext task (predicting
the future) based on the unlabeled acoustic signals in the
time and frequency domains, respectively. Next, encoders
with frozen parameters are taken from the trained feature
extractors for extracting the high-level features in the time and
frequency domains. During the training stage of the source
localizer, features extracted by two encoders are concate-
nated together as a time-frequency fused feature vector and
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fed into a 3-layer multi-layer perceptron for solving the downstream task (source localization) based on a tiny labeled
dataset. This method is assessed on the SWellEx-96 Experiment and compared with several alternative methods. The
performance analysis confirms the promising performance of our proposed method.

Index Terms— Contrastive predictive coding, self-supervised learning, underwater source localization, feature fusion.

I. INTRODUCTION

NDERWATER acoustic source localization is an active

research topic which is gaining relevance due to ocean
environment monitoring, navigation and related applications.
Recent approaches rely on machine learning, due to the
capability to achieve impressive performance with limited
prior information (e.g., unknown ocean environment, sound
speed profile, and/or seabed parameters) [1]-[6]. A deep
neural network trained by supervised learning is an end-to-
end model, which can automatically extract useful features
and conduct one specific task (e.g, source localization) guided
by the labels (source locations). Without enough labels, such
a strategy cannot achieve good performance. Unfortunately,
the insufficiency of labels is common in underwater acoustics
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scenarios. Most of the existing works concentrate on utilizing
different state-of-the-art architectures of deep neural networks
referenced from the field of computer science, such as general-
ized regression neural network (GRNN) [4] and residual neural
network (ResNet) [5], [6], to study their source localization
performance. These works used a similar approach to satisfy
the required number of labels, which is exploiting acoustic
propagation simulation models to create a huge simulation
dataset for training the source localizer based on supervised
learning. However, this approach has some limitations: (1) cre-
ating such a huge simulation dataset is time-consuming and
requires large computer storage resources; (2) this simulation
dataset is built for one specific ocean area, which means that
each time the ocean area is changed, the simulation process
needs to be repeated; (3) the numerical acoustic propagation
models are built based on simplified theoretical equations
which sometimes cannot well describe the real condition;
(4) to create the simulation dataset, prior information of the
environment is still needed.

These limitations make the aforementioned approach hard
to be applied in a real-world ocean monitoring system. For
instance, an ocean monitoring system will continuously collect
purely acoustic signals over a long period. The collected
purely acoustic signals can also provide useful but implicit
information about the ocean environment, such as variations in
the sound speed profile. This information cannot be sufficiently
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exploited and absorbed by a purely supervised learning model
since the model needs labels. To get rid of the cumber-
some simulation process and the difficulties of collecting
labels, learning features from unlabeled acoustic signals is
an alternative approach potentially capable of mitigating the
insufficiency of labeled data. This approach is designed based
on self-supervised learning (SSL), which obtains supervisory
signals from the unlabeled data and has shown excellent
results in computer vision [7], [8]. The SSL-based acoustic
source localization is mostly unexplored with a few exceptions
focusing on a reverberant room acoustic environment [9], [10]
and on the ocean environment [11]. From the SSL perspec-
tive, the existing works used the same method, convolutional
autoencoder (CAE) which is a basic method in SSL, to extract
useful features from unlabeled data for source localization.
Those works confirm the potential of SSL to extract features
for source localization especially when the labels are limited.
However, with the development of SSL, many methods have
been proposed and demonstrated their outperformance over the
CAE in the field of computer science, such as contrastive pre-
dictive coding (CPC) [12]. These methods have huge potential
for underwater acoustic localization. Our motivation is to dig
deeper into the application of SSL-based methods for under-
water source localization and enhance the related performance.
Note that our earlier conference paper has demonstrated the
feasibility of applying CPC to extract useful features from
acoustic time series for underwater source localization [13].

However, there are some remaining points wroth to be
studied:

« The necessity of jointly exploiting the acoustic time series
and their corresponding spectra for SSL-based source
localization since current SSL-based source localization
methods are based on signal processing either in fre-
quency domain [9]-[11] or time domain [13].

« The possibility of exploiting the signals collected among
different periods by one specific receiver for enhancing
localization performance. This corresponds to a common
scenario for a permanent monitoring system based on one
specific receiver at a fixed location.

« The possibility of exploiting the signals collected by sev-
eral receivers at different depths for enhancing localiza-
tion performance. This corresponds to a common scenario
for a monitoring system based on a vertical array.

The main contributions of this paper are summarized as
follows.

1) We focus on a common type of real-world scenario, that
is, a tiny labeled dataset and a large unlabeled dataset
(purely acoustic signals) are available. More specifically,
the labels provided by the GPS system are paired to
the acoustic signals collected by one specific receiver
during the same period. Two cases are considered for
collecting the unlabeled dataset: (a) one specific receiver
and (b) three receivers (containing the specific receiver)
at different depths.

2) We propose a CPC-based architecture that exploits joint
time-frequency processing for source localization and
outperforms the architectures based on single-domain

features in terms of localization errors, robustness to
receiver depth and generalization capability.

3) A comprehensive performance analysis of the proposed
method is presented based on a public database, the
SWellEx-96 Experiment [14], and three approaches for
exploiting unlabeled data are discussed. Recent alterna-
tive methods are used as a benchmark for comparison
and assess the value of our proposal.

The rest of the paper is organized as follows: Sec. II
states the considered problem; Sec. III describes the the-
ory of CPC, the architectures of the self-supervised feature
extractor and time-frequency fused source localizer; Sec. IV
presents the SWellEx-96 Experiment, the data preprocessing,
and the schemes of building the training and testing datasets;
A comprehensive performance analysis on Event S5 is given
in Sec. V; In Sec. VI, an analysis of the generalization
ability on Event S59 is described; In Sec. VII, the proposed
method is compared with a popular joint time-frequency signal
processing method, wavelet transform; Finally, the conclusion
and future direction are given in Sec. VIIIL.

Notation: Lowercase bold letters are adopted for vectors,
with a, representing the nth component of a. Uppercase bold
letters are adopted for matrices. Normal letters express scalars.

I[I. PROBLEM FORMULATION
To simplify the problem, we suppose that there is only one
source present and the source location is the horizontal range
between the source and the receiver. The underwater source
localization problem is to estimate the corresponding source
location y given the collected acoustic signal x:

Y = flocalizer (X) (1)

where fiocalizer () is the source localizer.

This is a standard regression problem in supervised learning
since the source location y is a real number. And the labeled
dataset is expressed as a set of data-pairs:

(X, y] =[x, vilY, 2)

where x; and y; are the ith acoustic signal and corresponding
source location, respectively. N is the total number of the
labeled data.

As an aforementioned scenario, there is only a tiny labeled
dataset available which is not enough amount for the purely
supervised learning scheme. We apply the SSL-based method
to this problem.

SSL strategy consists of a pretext task and a downstream
task [7]. The pretext task is a kind of task letting the neural
network learn latent features based on unlabeled data, such as
reconstructing input [15] and predicting the future [16]. Since
the pretext task does not need labels, the unlabeled dataset is
expressed as:

[X] = [x,1}L, 3)

where x ; is the jth acoustic signal and M is total number of
the available acoustic signals.

Based on the learned features, a downstream task (i.e.,
underwater source localization as defined in eq. (1)) will be
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Fig. 1. Workflow of source localization based on SSL.

solved by training a model based on a tiny labeled dataset with
purely supervised learning scheme. Note that the unlabeled
dataset can include the purely acoustic signals that occurred
in the labeled dataset since the real objective is source
localization which is a supervised regression task and needs
labels. Without labels, reusing purely acoustic signals will not
influence the fairness of the localization performance analysis.

I1l. METHODOLOGY

A common workflow of source localization based on SSL
is shown in Fig. 1, in which the workflow includes two stages,
i.e., training and testing stages. The training stage is for
constructing and training the source localizer, which consists
of two steps. The first step is training the self-supervised
feature extractor by solving different pretext tasks based on
an unlabeled dataset. The second step is training the source
localizer by purely supervised learning based on a tiny labeled
dataset. The testing stage is for predicting the source location
in real-world scenarios.

A. Self-Supervised Feature Extractor Based on
Contrastive Predictive Coding

In this paper, we use CPC to extract the high-level fea-
tures from the acoustic signals. The architecture of the
self-supervised feature extractor is the same as in [16], [18]
and shown in Fig. 2.

As shown in Fig. 2, the feature extractor consists of two
sub-models. The first sub-model is an non-linear encoder
Sencoder, Which compresses the input sequence into a sequence
of latent codes L; = fencoder (X1). The second sub-model is a
recurrent neural network (RNN) acting as an auto-regression
model for summarizing all previous latent codes L, into a
latent context representation C; = fryn (L<;).

The CPC aims at predicting the future k time steps by mod-
eling a density ratio which preserves the mutual information
between x;4+4 and C;:

fi(i1x, Cp) = exp(LL Wi C)) “4)

where a linear transformation W C; is used for the prediction
with a different Wy for every timestep k.

Predictions

Ll—3 LL—Z L[—l Ll Ll+1 Ll+2 Ll+3

Input:
Acoustic time series / Sequence of spectra

Fig. 2. Architecture of the self-supervised feature extractor.

During the training stage, the encoder and RNN are trained
to jointly optimize a loss function based on Noise-Contrastive
Estimation (NCE) [18] for maximizing the mutual informa-
tion. More details about the theory of CPC can be found
in [16], [18].

The feature extractors are named Time-CPC-extractor and
Freq-CPC-extractor when the inputs are a time series and a
sequence of spectra, respectively.

Based on preliminary configuration experiments, the pre-
dicting timestep is chosen as k = 16.

B. The Time-Frequency Fused Source Localizer

After training the Time-CPC-extractor and Freq-CPC-
extractor, only the Time-CPC-Encoder and Freq-CPC-Encoder
with frozen parameters are obtained, respectively.

During the training stage of the source localizer, the
signals in time and frequency domains are fed into
the Time-CPC-Encoder and Freq-CPC-Encoder, respectively.
Then the features extracted by the encoders are concatenated
together as a time-frequency fused feature vector and fed into
a 3-layer multi-layer perceptron (MLP) for the source local-
ization task. Since source localization can be formulated as a
regression problem, the mean squared error (MSE) is chosen
as the loss function. The architecture of the time-frequency
fused source localizer is shown in Fig. 3 where the arrows
indicate the direction of the data stream and the input is at the
bottom.

IV. DATASET AND PREPROCESSING

A. SWellEx-96 Experiment

SWellEx-96 Experiment was conducted between May
10 and 18, 1996, approximately 12 km from the tip of Point
Loma near San Diego, California [14]. The layout of the
experiment is shown in Fig. 4. Two acoustic sources were
towed by a vessel and simultaneously transmitted various
multi-tone signals at frequencies between 50 and 400 Hz.
Since the sources were towed simultaneously and no prior
information except the source location is known, the vessel
and the two sources are treated together as one source in this

paper.
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Fig. 3. Architecture of the time-frequency fused source localizer.
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Fig. 4. Layout of the SWellEx-96 experiment.

Events S5 and S59 are source towing events, which
were conducted for 75 and 65 minutes on different dates,
respectively. There was an extra passing vessel present during
the whole period of Event S59. On the contrary, in Event
S5, there was no such noise source present. Vertical liner
array (VLA) data from Events S5 and S59 are used to evaluate
the localization performance. The sampling rate of the acoustic
data was 1500 Hz and the VLA contained 21 receivers equally
spaced between depth 94.125 m and 212.25 m. Additionally,
the labels (source locations) were collected by the GPS system
of the vessel and converted to the horizontal ranges between
the source and the VLA shown in Fig. 5. The intervals of the
range are approximately 1 to 9 km and 1 to 4.5 km for Events
S5 and S59, respectively. More detailed information on the
SWellEx-96 Experiment can be found in [14].

B. Preprocessing

The acoustic signals collected by a single receiver are
cut into slices (four seconds per slice) without overlap and
arranged into a time signal matrix X;;;., where each row is
related to one slice. Based on X;;;,. (without any preprocess-

TABLE |
OVERVIEW OF THE DATABASE AND PREPROCESSING
Event S5 Event S59 Preprocessing
Xitime |1125 x 6000 975 x 6000 | Standardization
X spectra | 1125 x 3000 | 975 x 3000 | Min-max scaling
Yy 1125 x 1 975 x 1 | Min-max scaling
9
—— Event S5
81 —-- Event 559
7 E
6 B
€
< 51
[
2 44
&
3 4
2 4
14
01— . : : : . : :
0 10 20 30 40 50 60 70
Time (minutes)
Fig. 5. Horizontal ranges between the source and the VLA of the

SWellEx-96 experiment.

ing), the spectrum of each row is calculated and arranged into
a spectra matrix Xgpecrrq. In addition, the horizontal ranges
between the source and the VLA are known and represented
by a label vector y.

Several preprocessing methods are applied for the training
stability. Based on our previous works [11], [13], min-max
scaling (scaling into interval (0, 1)) is applied on the spectra
matrix Xjpeerrq and the label vector y. Standardization is
applied on the time signal matrix Xyj;,.. Preprocessing and
size of the data matrices and the label vector are shown in
Table .

C. Schemes of Building the Training and Testing
Datasets

For training the feature extractors, all of the unlabeled
acoustic signals are used to build the training dataset. During
each round of training, the input for Time-CPC-extractor
is each row in Xyjpe. Since the spectrum cannot provide
the time information which CPC needs, the input for Freq-
CPC-extractor is a sequence of rows from Xgpecrrq With
continuous indexes. We used one implementation trick to
make inputs the same time-span (i.e., four seconds per input)
for Time-CPC-Encoder and Freq-CPC-Encoder to solve the
downstream task in Fig. 3.

In the case study, three scenarios about the collected purely
acoustic signals are defined:

o Case 1: Purely acoustic signals collected by a single

receiver during Event S5 are available.

o Case 2: Purely acoustic signals collected by a single
receiver among periods of Events S5 and S59 are avail-
able. The dataset is constructed by concatenating the data
matrix from each event along the time axis.

o Case 3: Purely acoustic signals collected by multi-
receivers (assuming three receivers at different depths in
this paper) during Event S5 are available. The dataset is
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TABLE Il Case 1
TRAINING DATASETS FOR THE FEATURE EXTRACTORS IN CASE STUDY - ase
3.00 d
Case 1 Case 2 Case 3 2.50
Time-CPC-extractor | 1125 x 6000 | 2100 x 6000 | 3375 x 6000 200 = =
Freq-CPC-extractor | 1125 x 3000 | 2100 x 3000 | 3375 x 3000 g 150 -
1.00 0.85 0.64 979
. . 0.52 .47 0. 0.50 0.50 .44 0.45 0.52
constructed by concatenating the data matrix collected by 050 | O.m“ 938 E =5 0O
each receiver along the time axis. S  Ro R
The details of the training datasets for the feature extractors GRNN =CAE aTime-CPC WFreq-CPC mTime-Freq-CPC

are shown in Table II, where the numbers of training samples
are 1125, 2100, and 3375 in Cases 1, 2, and 3, respectively.

For training the source localizer, only 141 labeled data of
Event S5 are used to build the training dataset for mimicking
the scenario of extremely limited labels. During each round
of training, the inputs for the trained Time-CPC-Encoder and
Freq-CPC-Encoder are one row in X;;,. and the correspond-
ing row in Xpecrra, respectively. Since source localization can
be formulated as a regression problem, labels in the training
dataset should cover the whole interval of range. The samples
in Event S5 are expressed by the index i € (1, 1125).

The scheme of building the training dataset for the source
localizer is:

(x;,yi) Vi:mod(i,8) =1 5

where x; is the ith row in data matrices X;ime O Xspectra- Vi
is the ith element in the label vector y.
The scheme of building the testing dataset is:

Receiver for training : Vi : mod(i, 8) # 1
Other receivers : Vi € (1, 1125) (6)

To show the influence of different receiver-depth, receivers
no. 1 (top), no. 10 (middle), and no. 21 (bottom) are chosen
to build the training datasets (for both feature extractors and
the source localizer), respectively.

V. EX 1: PERFORMANCE ANALYSIS ON EVENT S5
Three cases are designed for evaluating the proposed
method. For a comprehensive analysis, all candidate localizers
are tested on the data collected by all receivers. The perfor-

mance metric is the averaged MSE tested on all receivers.

A. Case 1: Solving Pretext Task Based on a Single
Receiver in Event S5

Case 1 is the basic performance analysis. In this case, the
proposed method is compared with several alternative methods
which have been evaluated using the datasets of the SWellEx-
96 Experiment [4], [11], [13]. In addition, the pretext task
is solved based on the unlabeled data collected by a single
receiver in Event S5.

The candidate methods for Case 1 are:

e A GRNN-based localizer based on X pecrra (namely,

GRNN) [4].

e« A CAE-based localizer based on Xjpecrra (namely,
CAE) [11].

o A Freq-CPC-based localizer based on Xpecrrq (namely,
Freq-CPC).

o A Time-CPC-based localizer based on X, (namely,
Time-CPC) [13].

« The proposed localizer based on both Xpecrrq and Xyime
(namely, Time-Freq-CPC).

Fig. 6. Performance of the candidate localizers for case 1.

The performance of source localization for Case 1 is shown
in Fig. 6, where the legend shows the relationship between
colors and candidate localizers. In the abscissa, R1, R10, and
R21 are related to the top, middle, and bottom receivers,
respectively. The ordinate expresses the performance metric,
i.e., MSE.

From Fig. 6, interesting phenomena can be found:

o« The GRNN-based localizer has the worst performance
since it is a purely supervised model. As mentioned
in Sec. I, a vast labeled dataset is always required for
sufficiently training a purely supervised model. This phe-
nomenon reveals the drawback of the purely supervised
learning scheme when only an extremely limited labeled
dataset is available.

o All CPC-based localizers show better performance than
CAE, which illustrates that the pretext task of CPC is
better than that of CAE. A similar phenomenon has
already been mentioned in our previous work [13] and
the works in the field of computer vision [12].

o Trained on R1 and R10, Freq-CPC is better than Time-
CPC. On the contrary, trained on R21, Freq-CPC is worse
than Time-CPC. This phenomenon inspired an intuition:
A combination of features extracted from data both
in the time and frequency domains may improve the
localization performance.

« According to our intuition, Time-Freq-CPC is also tested.
Trained on R1, Time-Freq-CPC provides a significant
improvement in performance, which is consistent with our
intuition. However, trained on R10 or R21, Time-Freq-
CPC doesn’t show overwhelmed performance than others.
A possible reason for this irregular phenomenon may be
that Time-Freq-CPC needs more unlabeled data to learn
better features. Hence more cases are studied as follows.

In short, Case 1 provides a basic comparison of the methods
proposed in recent years. The results show that the CPC-based
localizers can provide better localization performance due to a
better design of the pretext task. However, the performance of
Time-Freq-CPC shows an irregular pattern, which needs more
cases to discuss.

Since the superior performance of the CPC-based localizers
is demonstrated in Case 1, the further performance analysis
will only focus on the CPC-based localizers.

B. Case 2: Solving Pretext Task Based on a Single
Receiver in Both Events S5 and S59

Case 2 investigates the practicability of using data collected
among different periods by a single receiver which is a
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Fig. 7. Performance of candidate localizers for case 2.

common real-world scenario for a permanent ocean monitor-
ing system. In this case, the pretext task is solved based on the
unlabeled data collected by a single receiver among periods of
Events S5 and S59. The candidate localizers are Time-CPC,
Freq-CPC, and Time-Freq-CPC.

The source localization performance for Case 2 is shown
in Fig. 7 with the same abscissa and ordinate as in Fig. 6.
The blue, orange, and gray bars are related to the Time-CPC,
Freq-CPC, and Time-Freq-CPC, respectively.

The following phenomena can be observed from Fig. 7:

o Compared to Case 1, the performance of Time-CPC
keeps almost the same. However, the performance of
Freq-CPC shows a significant improvement. It illustrates
that Freq-CPC can get more benefits than Time-CPC from
the data collected by a specific receiver among different
periods.

o Time-Freq-CPC shows the best performance among all
candidate localizers. It is consistent with our intuition that
using the fused features from both time and frequency
domains can significantly improve the performance, espe-
cially when localizers are trained on R10 and R21.

Case 2 provides a practical approach of sufficiently using the
unlabeled data collected by a single receiver among different
periods (Events S5 and S59) and demonstrates the benefit of
using the time-frequency fused features when the number of
available unlabeled data increases.

C. Case 3: Solving Pretext Task Based on
Multi-Receivers (R1, R10, and R21) in Event S5

Case 3 analyzes the practicability of using data collected by
multi-receivers. In this case, the pretext task is solved based
on the unlabeled data collected by multi-receivers (R1, R10,
and R21) in Event S5. The candidate localizers are the same
as in Case 2.

The performance of source localization for Case 3 is shown
in Fig. 8, where the legend, abscissa, and ordinate are the same
as in Fig. 7.

From Fig. 8, we can find:

o Compared to Cases 1 and 2, the performances of
Time-CPC and Freq-CPC have been improved, which
illustrates that both Time-CPC and Freq-CPC can benefit
from the data collected by multi-receivers. This is an
intuitive phenomenon since the selected three receivers
were located at different depths providing depth-related
information in the water column. However, in Cases
1 and 2, the pretext task is solved based on only the

Fig. 8. Performance of candidate localizers for case 3.

single receiver’s data, which cannot provide depth-related
information.

o Trained on R1 and R10, Time-Freq-CPC shows similar
performance as Freq-CPC. However, trained on R21,
Time-Freq-CPC is the best among all candidate localizers.
This phenomenon illustrates that Time-Freq-CPC can also
increase the robustness of the receiver-depth selection
since most localizers perform the worst when they are
trained based on R21.

In short, Case 3 provides a practical approach of sufficiently
using unlabeled data collected by multi-receivers among dif-
ferent receiver-depths and demonstrates again the benefits of
using the time-frequency fused features.

It should be noted that different configurations of selecting
three receivers have been tested, whose detailed discussion
is not shown in this paper since our proposed localizer has
already been demonstrated to have a superior performance by
the aforementioned case study. The results of the configuration
tests show that the performance becomes better when the
distance between the receivers is larger (i.e., R1, R10, and
R21) than that when the distance between the receivers is
smaller (for instance, R1, R2, and R3). It is because the larger
distance between receivers, the more information about the
whole water column will be obtained. However, as for the
generalization ability on Event S59 to be discussed in Sec. VI,
these configurations show a minor difference.

To have an intuitive view of localization performance, Fig. 9
shows the comparison of localization results among three
CPC-based localizers in Case 3. To solve the downstream task,
localizers are trained on R1 and tested on R2.

D. Discussion for EX 1

Time-CPC only gets benefits from the unlabeled data con-
taining more space variations (collected by multi-receivers
among different receiver-depths) as shown in Case 3.
Freq-CPC can also get benefits from the unlabeled data
containing more time variations (collected among different
periods) as shown in Case 2. As shown in all cases, Time-
Freq-CPC can further improve the performance by fusing the
features from both time and frequency domains.

To sum up, EX 1 provides a comprehensive analysis for
different real-world scenarios and demonstrates the superior
performance of the proposed method.

VI. EX 2: GENERALIZATION ABILITY ANALYSIS
ON EVENT S59
The downstream task of all localizers in EX 1 is solved
based on the labeled dataset in Event S5, which means
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Fig. 9. Comparison of the source localization results among three CPC-
based localizers on event S5: (a) Time-CPC; (b) Freq-CPC; (c) Time-
Freq-CPC.

that no localizer can access any labels in Event S59.
In EX 2, three CPC-based localizers (Time-CPC, Freq-CPC,
and Time-Freq-CPC) are chosen for investigating their gener-
alization ability on Event S59.

The performance of source localization for EX 2 is shown
in Fig. 10, in which the legend, abscissa, and ordinate are the
same as in Fig. 7.

Fig. 10 reveals the following phenomena:

o Time-Freq-CPC shows an overwhelmed performance fol-
lowed by Time-CPC, and Freq-CPC keeps the worst
performance.

o Comparing the three sub-figures, Time-CPC and
Freq-CPC show a biased performance when they are
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Fig. 10. Performance of candidate localizers for EX 2.

trained on the labeled dataset collected at different
receiver-depth. However, compared to others, the
performance of Time-Freq-CPC shows less bias among
different receiver-depth.

« In each sub-figure, the performances of Time-CPC and

Time-Freq-CPC show a similar ranking pattern as in
EX 1, i.e., Case 3 is the best, followed by Case 2 and
Case 1. This is because the number of unlabeled data for
Case 3 is the greatest, followed by that for Case 2 and
Case 1.

In short, EX 2 illustrates the generalization performance
of the three candidates localizers and demonstrates that the
proposed method (Time-Freq-CPC) shows the best ability of
generalization on the unseen dataset.

To have an intuitive view of the generalization performance,
Fig. 11 shows the comparison of localization results among
the three CPC-based localizers tested on R1 in Case 3.

VIl. COMPARISON BETWEEN THE PROPOSED
TIME-FREQUENCY FUSION METHOD AND THE WAVELET
TRANSFORM

The localization performance between the proposed method
and the wavelet transform for joint time-frequency signal
processing are compared in this section. Continuous wavelet
transform (CWT) based on the Morlet wavelet with 512 scale
factors is used to obtain the time-frequency representation
from the collected acoustic signal.

The signal processing based on wavelet is expressed as
follows:

1) CWT: The acoustic signals collected by a single receiver

are processed by CWT based on the Morlet wavelet
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Fig. 11. Comparison of the generalization performance among three

CPC-based localizers on event S59: (a) Time-CPC; (b) Freq-CPC; (c)
Time-Freqg-CPC.

with 512 scale factors. The obtained time-frequency
representation is expressed by a matrix X yqpeler Of size
512 x N, where 512 refers to the total number of scale
factors related to the frequency and N is the total length
of the collected acoustic signals (N = 6750000 and
5850000 for Event S5 and Event S59, respectively).

2) Preprocessing: Both min-max scaling and standardiza-
tion have been tested. Standardization is chosen for the
final comparison due to its better localization perfor-
mance. For a simpler description, we reuse X yapeler tO
express the preprocessed matrix.

The two-step workflow for training the wavelet-based local-
izer is shown in Fig. 12 and expressed as follows.

Fig. 13.  Performance comparison between proposed method and
wavelet-based localizer.

After preprocessing, the acoustic signals collected by a
single receiver are transformed into time-frequency represen-
tations which are shown at the bottom of Fig. 12. Here we use
Event S5 as an example, but the processing workflow for data
in Event S59 is the same. To keep the consistency of the input
time-span (i.e., four seconds per input data) as in the paper,
X waveler 18 cut into 1125 chunks [X1, X7, ..., X1125] (four
seconds per chunk). The strategy of training the wavelet-based
localizer is totally the same as in the paper. Note that the
architecture of the encoder is slightly different from that in
the paper since the input data has two dimensions.

The performance analysis is shown in Fig. 13 and expressed
as follows. The purple and gray bars are related to the
wavelet-based localizer and Time-Freq-CPC, respectively.

o The performance on Event S5:

— In Case 1, wavelet-based localizer performs signif-
icantly better when trained on R21 and almost the
same when trained on R1 and R10.

— In Cases 2 and 3, wavelet-based localizer performs
significantly worse than the proposed method.

o The generalized performance on Event S59:

— The wavelet-based localizer has a worse overall
generalized performance, especially in Case 3. With
a few exceptions: trained on R10 in Case 1, trained
on R21 in Case 2.

Our metrics for evaluating the performance consist of the
performance on the basic testing dataset that has the same
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origin as the training dataset (i.e., the performance on Event
S5) and the generalized performance on an unseen dataset (i.e.,
the performance on Event S59). Intuitively, before discussing
the generalized performance, the model should at least perform
well enough on the basic testing dataset. Based on this logic,
the proposed method has a better comprehensive performance
than the wavelet-based localizer especially when the number
of unlabeled data increases (i.e., in Case 2 and Case 3).

In addition, there are some points worth to be emphasized
from the implementation perspective:

e 512 scale factors correspond to the maximum limit of
our computing resources for preprocessing and training
neural networks.

o Compared to the proposed method, the wavelet-based
localizer needs much more computing resources.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we demonstrate the necessity of joint
time-frequency signal processing for underwater source local-
ization and propose a self-supervised source localizer whose
performance is evaluated on the SWellEx-96 Experiment. The
comprehensive analysis demonstrates the proposed method
is superior to alternative methods in terms of localization
performance, the robustness of receiver-depth selection, and
generalization capabilities on an unseen dataset. Two common
scenarios (Case 2 and Case 3) for a permanent ocean moni-
toring system are discussed and the possibility of enhancing
localization performance when more unlabeled data are avail-
able is demonstrated.

Future directions of research are:

« The possibility of combing the dataset collected at differ-
ent ocean areas for effective underwater source localiza-
tion in a wider ocean area based on the proposed method.

o The interpretation of the extracted features since the
meaning of these features may provide benefits for the
theoretical acoustic scientist to design a better simulation
model.

Implementation code availability:

The whole implementation code will be available on GitHub
(https://github.com/Xiaoyu-freshman) after the manuscript is
published.
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